Like Us on Facebook

Like Us Facebook

சனி, 29 அக்டோபர், 2016

IT6702 DATA WARE HOUSING AND DATA MINING SYLLABUS

                         KRCSENOTES
IT6702 DATA WARE HOUSING AND DATA MINING THEORY SYLLABUS REGULATION 2013
UNIT I DATA WAREHOUSING
Data warehousing Components –Building a Data warehouse –- Mapping the Data Warehouse to a Multiprocessor Architecture – DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools –Metadata. 

UNIT II BUSINESS ANALYSIS
Reporting and Query tools and Applications – Tool Categories – The Need for Applications – Cognos Impromptu – Online Analytical Processing (OLAP) – Need – Multidimensional Data Model – OLAP Guidelines – Multidimensional versus Multirelational OLAP – Categories of Tools – OLAP Tools and the Internet. 

UNIT III DATA MINING
Introduction – Data – Types of Data – Data Mining Functionalities – Interestingness of Patterns – Classification of Data Mining Systems – Data Mining Task Primitives – Integration of a Data Mining System with a Data Warehouse – Issues –Data Preprocessing.

UNIT IV ASSOCIATION RULE MINING AND CLASSIFICATION
Mining Frequent Patterns, Associations and Correlations – Mining Methods – Mining various Kinds of Association Rules – Correlation Analysis – Constraint Based Association Mining – Classification and Prediction - Basic Concepts - Decision Tree Induction - Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction.

UNIT V CLUSTERING AND TRENDS IN DATA MINING
Cluster Analysis - Types of Data – Categorization of Major Clustering Methods – K-means– Partitioning Methods – Hierarchical Methods - Density-Based Methods –Grid Based Methods – Model-Based Clustering Methods – Clustering High Dimensional Data - Constraint – Based Cluster Analysis – Outlier Analysis – Data Mining Applications.

கருத்துகள் இல்லை:

கருத்துரையிடுக

Related Posts Plugin for WordPress, Blogger...